Assigning the pKa's of Polyprotic Acids

George M. Bodner

Purdue University, West Lafayette, IN 47907

While teaching a biochemistry lab course in which students measured the pK_a 's of amino acids, the author was asked about the assignment of the pK_a 's of cysteine, which was reported in the textbook as follows.

He blithely answered that this assignment made sense, and picked up a copy of the "Handbook of Biochemistry"¹ to look up data that might prove its validity to the student. He started by noting that H_2S (7.00) was more acidic than the NH₄⁺ ion (9.24) and that the difference between the pK_a 's of H_2S and NH₄⁺ (2.24) was roughly equivalent to the difference between the second and third pK_a 's of cysteine (2.45).

He then naively suggested that the simplest way to test this assignment would be to see which pK_a disappeared when either the $-NH_3^+$ or -SH group of cysteine was derivatized. He was therefore quite pleased to find an entry for N,N,N-trimethyl cysteine,

$$(8.65)$$

$$SH$$

$$|$$

$$CH_2$$

$$(N,N,N-trimethyl cysteine)$$

$$(CH_3)H_3N^+-CH-CO_2^-$$

which showed the disappearance of the pK_a at 10.78, in accord with the textbook assignment.

Unfortunately, the student found an entry for S-methyl cysteine which showed that derivatization of the sulfhydryl group also leads to the disappearance of the pK_a at 10.78.

When we then turned to "Dissociation Constants of Organic Bases in Aqueous Solution"², the student noted that the pK_a data for both cysteine and cysteic acid were also in agreement with an assignment of pK_2 and pK_3 for cysteine that is the opposite of what appears in most textbooks.

Polyprotic Acids for which the Difference between K_a 's is Large

The answer to why derivatization of cysteine at either the $-NH_3^+$ or -SH groups leads to the loss of pK_3 is well known to biochemists but not as well known to chemists who are used to working with polyprotic acids such as H_2S , H_2CO_3 , and H_3PO_4 , or simple amino acids such as glycine.

Classical treatments of polyprotic acids are based on the assumption that the difference between the pK_a 's is large enough to assume stepwise dissociation.

$$H_nM + H_2O \rightleftharpoons H_{n-1}M^- + H_3O^+$$
 K_1
 $H_{n-1}M^- + H_2O \rightleftharpoons H_{n-2}M^{2-} + H_3O^+$ K_2 , etc.

If the dissociation is in fact stepwise, most of the H_3O^+ ion comes from the loss of the first proton, and the equilibrium concentrations of the H_3O^+ and $H_{n-1}M^-$ ions are more or less equal.

$$[H_3O^+] \simeq [H_{n-1}M^-]$$

Substituting this approximation into the equilibrium expression for the *first step* in the dissociation allows us to solve for the H_3O^+ or $H_{n-1}M^-$ ion concentration.

$$[H_3O^+] \simeq [H_{n-1}M^-] = \sqrt{K_1[H_nM]}$$

Substituting the same approximation into the expression for the second step suggests that the concentration of the $H_{n-2}M^{2-}$ ion is roughly equal to the value of K_2 for the acid.

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{H}_{n-2}\mathrm{M}^{2-}]}{[\mathrm{H}_{n-1}\mathrm{M}^{-}]} = K_{2}$$

The Henderson-Hasselbach Equation

When there is a large difference between the pK_a 's of an asymmetric polyprotic acid such as glycine, we can assign these pK_a 's to individual titratable groups. For example,

$$H_3N^+-CH_2-CO_2^-$$

(9.78) (2.35)

We can then use the Henderson-Hasselbach equation,

$$pH = pK_a + log \frac{[base]}{[acid]}$$

to calculate the percentage of each titratable group in its acid or conjugate base form at a given pH. At a pH of 7.00, for example, only 1 in 600 of the amino groups in glycine is present as the conjugate base (-NH₂), and only 1 in 45,000 of the α -carboxylic acid groups is present as the conjugate acid (-CO₂H).

Polyprotic Acids for which the Difference between K_a 's is Small

Cysteine is a classic example of a polyprotic acid for which

¹ Sober, H. A., Ed., ''Handbook of Biochemistry'', 2nd ed.; Chemical Rubber Company: Cleveland, OH, 1970.

² Perrin, D. D. "Dissociation Constants of Organic Bases in Aqueous Solution"; Butterworths: London, 1965.

the stepwise dissociation assumption fails.³ When cysteine is titrated with base, a significant fraction of the -SH groups are deprotonated at more or less the same time as the -NH₃⁺ ions.

Because the presence or absence of a charge on the -SH group can influence the acidity of the $-NH_3^+$ group, and vice versa, it is possible to define four *microscopic dissociation* constants for cysteine (k_n , k_s , $k_{n'}$ and $k_{s'}$) that describe what happens when the -SH and $-NH_3^+$ groups are titrated.

These *microscopic* dissociation constants are associated with the following equilibria.

$$\begin{split} k_{\rm s} &= \frac{[{\rm H}_3{\rm O}^+][{\rm H}_3{\rm N}^+-{\rm S}^-]}{[{\rm H}_3{\rm N}^+-{\rm S}{\rm H}]} \\ k_{\rm n} &= \frac{[{\rm H}_3{\rm O}^+][{\rm H}_2{\rm N}-{\rm S}{\rm H}]}{[{\rm H}_3{\rm N}^+-{\rm S}{\rm H}]} \\ k_{\rm s'} &= \frac{[{\rm H}_3{\rm O}^+][{\rm H}_2{\rm N}-{\rm S}^-]}{[{\rm H}_2{\rm N}-{\rm S}{\rm H}]} \\ k_{\rm n'} &= \frac{[{\rm H}_3{\rm O}^+][{\rm H}_2{\rm N}-{\rm S}^-]}{[{\rm H}_3{\rm N}^+-{\rm S}^-]} \end{split}$$

Because two products are formed when the $H_3N^+CH(CH_2SH)CO_2^-$ ion loses a proton, H_2N --SH and the H_3N^+ --S⁻ ion, the equilibrium concentration of the conjugate base in this dissociation is equal to the sum of the concentrations of these products. The equilibrium expression for the *macroscopic* K_2 constant which measures the ease with which cysteine loses a second proton is therefore,

$$K_2 = \frac{[\mathrm{H_3O^+}]([\mathrm{H_3N^+}\text{---S^-}] + [\mathrm{H_2N}\text{---SH}])}{[\mathrm{H_3N^+}\text{--SH}]}$$

Both the H₂N---SH and H₃N⁺---S⁻ produced in the second dissociation of cysteine can go on to lose a third proton to form the H₂N---S⁻ ion. Because two acids, H₂N---SH and H₃N⁺---S⁻, serve as sources of the H₂N---S⁻ conjugate base, the equilibrium expression for the *macroscopic* K_3 dissociation constant for cysteine is

$$K_3 = \frac{[\mathrm{H}_3\mathrm{O}^+][\mathrm{H}_2\mathrm{N}-\mathrm{S}^-]}{[\mathrm{H}_3\mathrm{N}^+-\mathrm{S}^-] + [\mathrm{H}_2\mathrm{N}-\mathrm{S}\mathrm{H}]}$$

What is the relationship between the macroscopic (K_2 and

⁴ Benesch, R. E.; Benesch, R. J. Amer. Chem. Soc. 1955, 77, 5877.

 K_3) dissociation constants measured when cysteine is titrated and the *microscopic* or *molecular* (k_s , k_n , etc.) dissociation constants of the -NH₃⁺ and -SH groups? By juggling the equilibrium expressions for K_2 , K_3 , k_s , k_n , $k_{s'}$, and $k_{n'}$ we can see that,

$$K_{2} = \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]([\mathrm{H}_{3}\mathrm{N}^{+}-\mathrm{S}^{-}] + [\mathrm{H}_{2}\mathrm{N}-\mathrm{S}\mathrm{H}])}{[\mathrm{H}_{3}\mathrm{N}^{+}-\mathrm{S}\mathrm{H}]} = k_{\mathrm{n}} + k_{\mathrm{s}}$$
$$\frac{1}{K_{3}} = \frac{[\mathrm{H}_{3}\mathrm{N}^{+}-\mathrm{S}^{-}] + [\mathrm{H}_{2}\mathrm{N}-\mathrm{S}\mathrm{H}]}{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{H}_{2}\mathrm{N}-\mathrm{S}^{-}]} = \frac{1}{k_{\mathrm{s}'}} + \frac{1}{k_{\mathrm{n}'}}$$

and,

$$k_{\rm s}k_{\rm n'} = k_{\rm s'}k_{\rm n} = \frac{[{\rm H}_3{\rm O}^+]^2[{\rm H}_2{\rm N}-{\rm S}^-]}{[{\rm H}_3{\rm N}^+-{\rm S}{\rm H}]} = K_2K_3$$

The macroscopic dissociation constants (K_2 and K_3) measured when cysteine is titrated are therefore related to the acidity of both the -NH₃⁺ and -SH groups, and it is a mistake to attempt to assign these macroscopic constants to either the -SH or -NH₃⁺ group of cysteine unless there is reason to believe that there is a significant difference in the magnitude of the microscopic constants k_s and k_n .

Analysis of Microscopic Dissociation Constants for Cysteine

An analysis of UV spectral data for cysteine derivatives enabled Benesch and Benesch⁴ to determine the *microscopic* pk_a constants for cysteine.

> $pk_{s} = 8.53$ $pk_{n} = 8.86$ $pk_{s'} = 10.03$ $pk_{n'} = 10.36$

These data suggest that the *microscopic* or *molecular* dissociation constants for the -SH and $-NH_3^+$ groups in cysteine are virtually identical. Furthermore, the loss of a proton by either the -SH or $-NH_3^+$ groups leads to a decrease of about 1.5 pK units in the acidity of the other functional group, as might be expected.

Analysis of pKa Data

The close similarity between the *microscopic* dissociation constants for the $-NH_3^+$ and -SH groups in cysteine might appear surprising at first glance, since the pK_a 's of H_2S and NH_4^+ differ by 2 pH units. However, the pK_a of a more reasonable model compound, CH_3CH_2SH (10.60), is remarkably close to the pK_a of $CH_3NH_3^+$ (10.66), and the results of this analysis of cysteine are therefore not particularly surprising.

Conclusion

Because the *microscopic* pk_a 's of the -SH and $-NH_3^+$ groups in cysteine are almost the same, derivatization of either group leads to the disappearance of the same *macroscopic* pK. The difference of roughly 2 pK units between pK_2 and pK_3 of cysteine is not a reflection of the relative acidities of the -SH and $-NH_3^+$ groups but the effect of the loss of a proton by either the -SH or $-NH_3^+$ group on the acidity of the remaining functional group.

Although it is tempting to assign the pK_a 's of polyprotic acids to individual titratable groups, this exercise should be reserved for those acids where the difference between the K_a 's is large enough that we can safely assume stepwise dissociation.

³ Edsall, J. T.; Wyman, J. "Biophysical Chemistry"; Academic: New York, 1958; Vol 1 pp 450–504.